В праздничные дни с 31 декабря по 11 января магазин не производит отгрузки. По всем запросам поступившим в праздничные дни мы обязательно ответим вам 12 января.
30 лет  на рынке 
 35 офисов  по всей России 
 80 000  клиентов

Автоматический анализ лояльности посетителей

 2126
 13.06.2017
Автоматический анализ лояльности посетителей

Крайнюю актуальность в настоящее время приобретает не только привлечение новых посетителей, но и их последующее удержание. Но встает вопрос — как оценить лояльность?

Программы лояльности, построенные на использовании карт, могут давать подобную статистику, но они охватывают только часть покупателей, о лояльности которых уже известно, и совершенно не учитывают посетителей, поэтому не дают полной картины. А в большинстве торговых центров и вовсе не предусмотрено карт лояльности.

Ниже приводится исследование, проведенное «РБК.research», подтверждающее неравномерное проникновение подобных программ среди покупателей и нестабильный уровень использования карт в целом.

У Rstat есть решение, позволяющее автоматически собирать данные о лояльности посетителей. Это решение принципиально отличается от статистики по картам лояльности и анкетированию.

MAC-адрес — это уникальный идентификатор, присваиваемый каждой единице сетевого оборудования. Конечно, такой способ сбора данных не даст полной картины, но зато не ранжирует посетителей и покупателей, поэтому выборка получается более представительной. Для считывания mac-адреса посетители не обязательно должны быть подключены к какой-либо сети, идентификация в большинстве случаев возможна просто при включенном WiFi на мобильном устройстве.

Кстати, собираемые таким образом данные не попадают под Федеральный закон РФ от 27 июля 2006 года № 152-ФЗ «О персональных данных», так как данные содержат в себе только уникальные идентификаторы мобильных устройств без привязки к владельцам.

Отчеты, получаемые при автоматической оценке лояльности

Тип отчета Описание, практическое применение
Соотношение посетителей Выделяются три категории:
• новые посетители (mac-адреса, определенные впервые),
• вернувшиеся (mac-адреса, которые уже были определены),
• посетители без WiFi (сопоставление WiFi-статистики с данными, полученными от сенсоров подсчета посетителей).
Данный отчет максимально интересен по прошествии некоторого времени, когда накапливается база данных mac-адресов посетителей.
Данное соотношение служит для оценки репрезентативности выборки.
Динамика возвращений Отчет, показывающий, растет или уменьшается количество вернувшихся посетителей. Прекрасно подходит для оценки проведенных рекламных акций. Пример 1: была проведена смс-рассылка посетителям, оставившим ранее свои контактные данные. Появление всплеска возвратов свидетельствует от интересности предложения для целевой аудитории.
Пример 2: проведена уличная акция по раздаче флаеров с целью расширения группы охвата аудитории. В таком случае об успешности рекламной акции свидетельствует всплеск новых посетителей.
Количество возвращений Сегментирование посетителей по группам в зависимости от частоты возвратов. Для каждого типа магазинов, как и для разных классов ТРЦ, нормальными будут являться разные количества возвращений, ведь продуктовые магазины люди посещают намного чаще ювелирных магазинов. Выявление нормального для каждого объекта количества возвратов позволяет в дальнейшем планировать мероприятия по удержанию лояльных клиентов и оценивать их результативность.
Среднее проведенное время, анализ по данным WiFi Показатель для оценки интересности объекта для посетителей. Чем больше времени люди проводят внутри, тем больше данный объект соответствует ожиданиям посетителей и тем больше их потребностей может удовлетворить, что в конечном итоге влияет на величину среднего чека.
Получите профессиональные рекомендации для вашего бизнеса
Написать в Telegram